2010年5月24日 星期一
2010年5月20日 星期四
2010年5月19日 星期三
2010年5月16日 星期日
碳60是什麼?
C60的發現及得獎,可以說是兩件天文物理研究上的意外斬獲。1985年美國的柯爾、史麥利及英國的科洛托三人共同發現C60並加以合成,1990年以後有關此類物質的研究大幅成長,大家也預料C60的發現者會得諾貝爾獎,台灣也刮起了C60風,1993、1994連續兩年的大學聯考均有此方面的考題,在1996年這三位科學家憑著此重大成就獲得諾貝爾化學獎。C60的模型構造各種版本的高中化學教科書對均有提到,但其結構共有幾個六角型平面?幾個五角型平面?碳原子的位置應在巴克球模型上的何處?很多高中生都甚為迷惑,本文特從鍵價理論及削去尖角的『二十面體』中加以計算、解析,使理論與模型結合。
一、碳的第三種同素異形體
由同一元素組成,但具有不同形態的物質稱為同素異形體,硫的同素異形體有斜方硫、彈性硫和單斜硫,碳的同素異形體有金剛石、石墨和C60(又名芙-60),C60是除了石墨、金剛石之外的碳的第三種同素異形體,令人吃驚的是,石墨是由碳的六角形平面重疊排列組成的巨大分子,金剛石是由碳的正四面體形狀綿延堆積而成,到了C60居然變成極為對稱的球狀分子。
二、化學教科書均有提及C60
1999年開始發行使用的各種新版高中化學教科書對C60均有提到,但大都僅論及四、五行,除建宏版把C60 放在 基礎化學 物質的形成及其變化 外,其餘各版本均安排在 物質科學化學篇(下)非金屬元素的性質 這一章中,大同資訊版花上二小段的篇幅為各版本中敘述最詳盡者,建宏版的基礎化學更以C60結構圖為封面。
三、無心插柳的意外發現
C60的發現是天文物理研究上「正打歪著」的意外收獲。英國布來頓(Brighton)薩克奚斯(Sussex)大學化學與分子學院的科洛托教授(Harry. W. Kroto)為了探究星際間的塵埃光譜,在可見光區及紫外光區的吸收帶是否由微小的石墨碳粒所引起,一直在尋找一台可以模擬富含碳元素星球周遭條件的儀器,在英國遍尋不著,美國休士頓(Houston)萊斯(Rice)大學化學系的柯爾(Robert. Curl)教授告訴他,在該校奈米科技中心有適合的儀器,屬史麥利(Richard. E. Smalley)教授所有,當時這部儀器主要用於矽和鍺等半導體的研究,它的功能是用雷射蒸發物質,然後與鈍氣混合,經由噴嘴噴出冷卻,最後以質譜儀記錄產物,因為使用者眾多,大排長龍,科洛托的檔期被安排在十八個月之後,真是好事多磨,足足等了一年又半載,在1985年,他飛越大西洋遠赴休士頓,與柯爾、史麥利合作研究,他們以聚焦的雷射光照設石墨,激發出蒸氣,將此蒸氣冷凝後測出許多含偶數個碳原子的碳原子簇,例如:C24、C32、C60、C70、C84、C540、C1500等,這一系列的分子稱為碳簇分子(carbon cluster)。數天後,他們在質譜上發現對應60個及70個碳原子的兩個主要譜峰,峰的強弱與蒸氣壓有關,稍早有些研究者也有類似的發現,但是沒有更進一步對這個現象做探討,因此喪失畢生難遇的獲獎機會。
相反地,科洛托等人集中精力去探討含60個碳及70個碳的物質的可能構造,他們利用氦氣將該物質攜帶進入質譜儀中分析,發現了分子量為720、840的C60、C70分子,藉著經驗法則、模型推演,得到的結論卻是一個令他們不敢相信的類似足球般的空心籠狀物,由60個碳原子組成,其結構很像在1967年蒙特婁(Montreal)世界博覽會場,由美國建築師巴克明斯特.富勒(R. Buckminster Fuller)所設計出的圓頂屋(Geodesic Dome),故論文命名為「碳60富勒烯」, 簡稱為巴克球(Bucky-ball),Rice大學數學系的教授們告訴他們,這是一個「削去尖角的『二十面體』」,數學家相當了解,建議他們買了個足球,在草地上照相,放在文章中。C70也具有類似的結構,因此,籠狀或球殼形的純碳族分子誕生了,而且也有了自己的名字-富勒烯(fullerene),爾後,類似C60的分子相繼被發現,世界各地的科學家開始鑽研「富勒烯」,從30個碳原子至含有數百個碳原子的足球烯,統稱碳簇。
圖一:1967年加拿大蒙特婁 世界博覽會上的美國館,建築物高60公尺。 圖二:二十面體
圖三:C60的模型(由12個五角形和20個六角形所組成,其碳原子間的連結形式與石墨非常類似。) 圖四:類似巴克球(Bucky-ball)的足球。
碳簇分子具有烯類的性質,碳數在70以下的分子稱為富勒烯;碳數介於70-100的分子稱為大富勒烯(High Fullerenes);碳數大於100的,稱為巨富勒烯(Giant Fullerenes)。C70的結構可視為將C60伸展,成橢圓形,大富勒烯C76、C78的結構可視為將C70橫向伸展,伸展的程度隨著碳數目增加而增加,成橢圓形中空的籠狀結構物。
四、邁向諾貝爾化學獎之路
由於休士頓研究群的儀器中祇能產生極少量的氣相物種,因此富勒烯的研究一直無法突破,足球形的假想構造僅得到計算化學家的支持,一直到1990年霍夫曼(Huffman)及克瑞茲莫(Kratschmer)所帶領的天文物理研究團隊意外發展出石墨電弧製備法,可產生足夠量的「富勒烯」供各式各樣的物理與化學實驗,因而開啟了一個新的領域,不論物理學、化學、材料科學、生命科學、資訊科學均有不少專家學者投入「富勒烯」的研究,C60也在1990年獲選為美國科學雜誌(Science)的「年度分子」,這個意外的發展將科洛托等人推向諾貝爾化學獎寶座。值得一提的是在發展此製備方法時,他們憑靠的是量子化學對具二十面體對稱的C60的紅外光譜的預測做為指引,幾天後碳十三核磁共振光譜圖中特立的唯一一根譜線,更加肯定了他們的假設。
1990年之後富勒烯的相關研究大幅成長,如更高碳數的富勒烯的製備、奈米管的製備、富勒烯上的化學反應及衍生物、富勒烯的硬度、富勒烯化合物的超導及鐵磁性質、富勒烯做為藥物的可能性等都是研究人員注意的焦點,自然而然的出現了一個新的學門。目前碳簇的實際用途為用來製造觸媒、塑膠、火箭燃料、碳簇化合物及有機超導體、新超導材料探索研發、水溶性碳簇衍生物之生物醫學之應用。
C60相當穩定,在高速撞擊時不會分解 若在氮氣中加熱其晶體至550℃可以使其昇華,但亦不會分解。日本NEC實驗室的矢田阪(Masako Yudasaka)將C60分子填入碳奈米管內,產生了極高的壓力值,C60上的力量僅有數微牛頓,可是除以碳奈米管的面積後,會獲致高達108 Pa的壓力,此發現將促使C60對化學應用產生新的改變。矢田阪亦宣稱直徑2nm、長度50nm、張開角度20度的錐狀碳奈米管,將可取代過濾器中的活性碳,用來吸收氣體。
五、C60的邊、面(環)數目之計算
C60為目前所知最對稱的分子,由60個碳原子組成,共有32個面(20個六角形和12個五角形)、60個頂點(60個碳原子分別箝在每一個頂點上)、90個邊(稜線),其形狀類似足球,直徑為7.1埃,在25℃下為固態,呈紫色,密度為1.68克/毫升,其碳-碳鍵長有兩種,分別為1.38埃和1.45埃。相鄰兩六角環所共用的兩個碳原子間的鍵長較短,較接近雙鍵的性質,相鄰六角環和五角環所共用的兩個碳原子間的鍵長較長,較接近單鍵的性質,每1個五角環與5個六角環相接,接合處的鍵長為1.45埃,每1個六角環與3個六角環、3個五角環交互相接,接合處的鍵長分別為1.38埃、1.45埃。
(一)、邊數的計算:
碳為四價,應形成4個化學鍵,C60的分子中,每一個碳原子僅與相鄰的三個碳原子鍵結,即具有三個δ鍵,一個π鍵,故碳應具有近似石墨的sp2混成軌域鍵結。每一個δ鍵是由2個碳原子共用,因此每一個碳原子平均擁有1.5個δ鍵,C60的分子中共有60個碳原子,應擁有δ鍵90個(1.5×60),即90個邊。每一個π鍵是由2個碳原子共用,因此每一個碳原子平均擁有0.5個π鍵,60個碳原子應擁有π鍵30個(0.5×60),即具有30個雙鍵(每一個雙鍵均由一個δ鍵及一個π鍵所組成),60個(90-30)單鍵。
(二)、邊數的另一算法:
每一個碳原子僅與相鄰的三個碳原子鍵結,二處C-C單鍵,一處C=C雙鍵,因單鍵、雙鍵為兩碳原子間共用,因此每一個碳原子平均擁有0.5×2個單鍵,0.5個雙鍵,C60的分子中共有60個碳原子,應擁有60個(0.5×2×60)單鍵及30個(0.5×60)雙鍵,即90個(60+30)邊。
圖五:每1個六角環與3個六角環、 圖六:每1個五角環與5個
3個五角環交互相接。 六角環相接。
(三)、六角環的數目:
每1個六角環與3個六角環、3個五角環交互相接,接合處的鍵分別為雙鍵、單鍵(如圖五),因與鄰環共用,因此1個六角環實際僅有1.5個(0.5×3)雙鍵、1.5個單鍵。C60的分子中有30個雙鍵,故有20個(30/1.5)六角環;又單鍵共有60個,20個六角環共用去30個(1.5×20)單鍵,剩下30個(60-30)單鍵供五角環用。
(四)、五角環的數目:
每1個五角環與5個六角環相接(如圖六),接合處的鍵均為單鍵,因與六角環共用,因此1個五角環平均擁有2.5個(0.5×5)單鍵,故有12個(30/2.5)五角環。
(五)、僅由邊數無法推出五角環、六角環的數目:
五角環雖有5個邊,因與鄰環共用,因此1個五角環實際僅擁有2.5個邊。六角環雖有6個邊,因與鄰環共用,因此1個六角環實際僅擁有3個邊。
設五角環有x個、六角環有y個(x 、y均為正整數)
2.5 × x+3 × y = 90
3 × y= 90-2.5 × x
y = 30 -(5/6)× x
x必為6的倍數
解之 x=6 y=25;x=12 y=20;x=18 y=15或x=24 y=10
六、截角正二十面體(truncated icosahedron)的製作方法
將(實心)正二十面體的每個凸角切掉適當大小,即形成一個截角正二十面體。它具有六十個頂點、九十條稜線,以及三十二個面(其中二十個為正六邊形,十二個為正五邊形)。由於它由兩種正多邊形拼成,因此並不算是「正多面體」,足球便是截角正二十面體(如圖四)。
七、連續兩年的大學聯考考題
【1993日大】
碳六十,是最近新發現的碳的同素異形體。它的分子C60是由60個碳原子所組成,它的分子形狀像足球,如圖三。試問其碳上的混成軌域與下列何者最接近?(A)鑽石中的碳(B)石墨中的碳 (C)二氧化碳中的碳 (D)聚乙烯中的碳
解析:C60為sp2混成軌域,而鑽石、聚乙烯為sp3混成軌域,二氧化碳為sp混成軌域,只有石墨中的碳和C60一樣為sp2混成軌域。
【1994日大】
C60的分子如圖三,它有幾個π鍵?(A)60 (B)30 (C)20 (D)0
解析:每一個C以sp2混成軌域彼此鍵結形成單鍵,且均剩下一個pz電子,而每一個π鍵需2個pz電子,60個C有60個pz電子,故可形成30個π鍵。
八、結語
C60由20個六角環和12個五角環所組成,這是課本上的詞句,常出現在考題中,讀完本文後,您還要再死記20、12這種數字嗎?C60的發現及得獎,可以說是兩件天文物理研究上的意外斬獲,雖然是二十世紀的化學成果,但對於二十一世紀的科技發展必有深遠的影響,我們且拭目以待吧!
九、參考資料
1.李虎雄等(民90年):高級中學幾何學(下),p66。台中市:大同資訊。
2.黃長司等(民89年):高級中學物質科學化學篇(下)教師手冊,p116。台中市:大同資訊。
3.施政雄等(民88年):高級中學基礎化學教師手冊,p59-61。台北縣:建宏出版社。
4.楊永華等(民90年):高級中學物質科學化學篇(下)教師手冊,p129。台北市:三民書局。
5.夏鑄九(1999年):建築,p113。台北市:貓頭鷹出版社。
6.李錫隆,一九九六年諾貝爾化學獎的故事。
參考資料
http://www.cysh.cy.edu.tw/subject/chem/C60%AA%BA%B5o%B2{%BBP%A8%E4%C3%E4%A1B%AD%B1%BC%C6%A5%D8%A4%A7%ADp%BA%E2.htm
一、碳的第三種同素異形體
由同一元素組成,但具有不同形態的物質稱為同素異形體,硫的同素異形體有斜方硫、彈性硫和單斜硫,碳的同素異形體有金剛石、石墨和C60(又名芙-60),C60是除了石墨、金剛石之外的碳的第三種同素異形體,令人吃驚的是,石墨是由碳的六角形平面重疊排列組成的巨大分子,金剛石是由碳的正四面體形狀綿延堆積而成,到了C60居然變成極為對稱的球狀分子。
二、化學教科書均有提及C60
1999年開始發行使用的各種新版高中化學教科書對C60均有提到,但大都僅論及四、五行,除建宏版把C60 放在 基礎化學 物質的形成及其變化 外,其餘各版本均安排在 物質科學化學篇(下)非金屬元素的性質 這一章中,大同資訊版花上二小段的篇幅為各版本中敘述最詳盡者,建宏版的基礎化學更以C60結構圖為封面。
三、無心插柳的意外發現
C60的發現是天文物理研究上「正打歪著」的意外收獲。英國布來頓(Brighton)薩克奚斯(Sussex)大學化學與分子學院的科洛托教授(Harry. W. Kroto)為了探究星際間的塵埃光譜,在可見光區及紫外光區的吸收帶是否由微小的石墨碳粒所引起,一直在尋找一台可以模擬富含碳元素星球周遭條件的儀器,在英國遍尋不著,美國休士頓(Houston)萊斯(Rice)大學化學系的柯爾(Robert. Curl)教授告訴他,在該校奈米科技中心有適合的儀器,屬史麥利(Richard. E. Smalley)教授所有,當時這部儀器主要用於矽和鍺等半導體的研究,它的功能是用雷射蒸發物質,然後與鈍氣混合,經由噴嘴噴出冷卻,最後以質譜儀記錄產物,因為使用者眾多,大排長龍,科洛托的檔期被安排在十八個月之後,真是好事多磨,足足等了一年又半載,在1985年,他飛越大西洋遠赴休士頓,與柯爾、史麥利合作研究,他們以聚焦的雷射光照設石墨,激發出蒸氣,將此蒸氣冷凝後測出許多含偶數個碳原子的碳原子簇,例如:C24、C32、C60、C70、C84、C540、C1500等,這一系列的分子稱為碳簇分子(carbon cluster)。數天後,他們在質譜上發現對應60個及70個碳原子的兩個主要譜峰,峰的強弱與蒸氣壓有關,稍早有些研究者也有類似的發現,但是沒有更進一步對這個現象做探討,因此喪失畢生難遇的獲獎機會。
相反地,科洛托等人集中精力去探討含60個碳及70個碳的物質的可能構造,他們利用氦氣將該物質攜帶進入質譜儀中分析,發現了分子量為720、840的C60、C70分子,藉著經驗法則、模型推演,得到的結論卻是一個令他們不敢相信的類似足球般的空心籠狀物,由60個碳原子組成,其結構很像在1967年蒙特婁(Montreal)世界博覽會場,由美國建築師巴克明斯特.富勒(R. Buckminster Fuller)所設計出的圓頂屋(Geodesic Dome),故論文命名為「碳60富勒烯」, 簡稱為巴克球(Bucky-ball),Rice大學數學系的教授們告訴他們,這是一個「削去尖角的『二十面體』」,數學家相當了解,建議他們買了個足球,在草地上照相,放在文章中。C70也具有類似的結構,因此,籠狀或球殼形的純碳族分子誕生了,而且也有了自己的名字-富勒烯(fullerene),爾後,類似C60的分子相繼被發現,世界各地的科學家開始鑽研「富勒烯」,從30個碳原子至含有數百個碳原子的足球烯,統稱碳簇。
圖一:1967年加拿大蒙特婁 世界博覽會上的美國館,建築物高60公尺。 圖二:二十面體
圖三:C60的模型(由12個五角形和20個六角形所組成,其碳原子間的連結形式與石墨非常類似。) 圖四:類似巴克球(Bucky-ball)的足球。
碳簇分子具有烯類的性質,碳數在70以下的分子稱為富勒烯;碳數介於70-100的分子稱為大富勒烯(High Fullerenes);碳數大於100的,稱為巨富勒烯(Giant Fullerenes)。C70的結構可視為將C60伸展,成橢圓形,大富勒烯C76、C78的結構可視為將C70橫向伸展,伸展的程度隨著碳數目增加而增加,成橢圓形中空的籠狀結構物。
四、邁向諾貝爾化學獎之路
由於休士頓研究群的儀器中祇能產生極少量的氣相物種,因此富勒烯的研究一直無法突破,足球形的假想構造僅得到計算化學家的支持,一直到1990年霍夫曼(Huffman)及克瑞茲莫(Kratschmer)所帶領的天文物理研究團隊意外發展出石墨電弧製備法,可產生足夠量的「富勒烯」供各式各樣的物理與化學實驗,因而開啟了一個新的領域,不論物理學、化學、材料科學、生命科學、資訊科學均有不少專家學者投入「富勒烯」的研究,C60也在1990年獲選為美國科學雜誌(Science)的「年度分子」,這個意外的發展將科洛托等人推向諾貝爾化學獎寶座。值得一提的是在發展此製備方法時,他們憑靠的是量子化學對具二十面體對稱的C60的紅外光譜的預測做為指引,幾天後碳十三核磁共振光譜圖中特立的唯一一根譜線,更加肯定了他們的假設。
1990年之後富勒烯的相關研究大幅成長,如更高碳數的富勒烯的製備、奈米管的製備、富勒烯上的化學反應及衍生物、富勒烯的硬度、富勒烯化合物的超導及鐵磁性質、富勒烯做為藥物的可能性等都是研究人員注意的焦點,自然而然的出現了一個新的學門。目前碳簇的實際用途為用來製造觸媒、塑膠、火箭燃料、碳簇化合物及有機超導體、新超導材料探索研發、水溶性碳簇衍生物之生物醫學之應用。
C60相當穩定,在高速撞擊時不會分解 若在氮氣中加熱其晶體至550℃可以使其昇華,但亦不會分解。日本NEC實驗室的矢田阪(Masako Yudasaka)將C60分子填入碳奈米管內,產生了極高的壓力值,C60上的力量僅有數微牛頓,可是除以碳奈米管的面積後,會獲致高達108 Pa的壓力,此發現將促使C60對化學應用產生新的改變。矢田阪亦宣稱直徑2nm、長度50nm、張開角度20度的錐狀碳奈米管,將可取代過濾器中的活性碳,用來吸收氣體。
五、C60的邊、面(環)數目之計算
C60為目前所知最對稱的分子,由60個碳原子組成,共有32個面(20個六角形和12個五角形)、60個頂點(60個碳原子分別箝在每一個頂點上)、90個邊(稜線),其形狀類似足球,直徑為7.1埃,在25℃下為固態,呈紫色,密度為1.68克/毫升,其碳-碳鍵長有兩種,分別為1.38埃和1.45埃。相鄰兩六角環所共用的兩個碳原子間的鍵長較短,較接近雙鍵的性質,相鄰六角環和五角環所共用的兩個碳原子間的鍵長較長,較接近單鍵的性質,每1個五角環與5個六角環相接,接合處的鍵長為1.45埃,每1個六角環與3個六角環、3個五角環交互相接,接合處的鍵長分別為1.38埃、1.45埃。
(一)、邊數的計算:
碳為四價,應形成4個化學鍵,C60的分子中,每一個碳原子僅與相鄰的三個碳原子鍵結,即具有三個δ鍵,一個π鍵,故碳應具有近似石墨的sp2混成軌域鍵結。每一個δ鍵是由2個碳原子共用,因此每一個碳原子平均擁有1.5個δ鍵,C60的分子中共有60個碳原子,應擁有δ鍵90個(1.5×60),即90個邊。每一個π鍵是由2個碳原子共用,因此每一個碳原子平均擁有0.5個π鍵,60個碳原子應擁有π鍵30個(0.5×60),即具有30個雙鍵(每一個雙鍵均由一個δ鍵及一個π鍵所組成),60個(90-30)單鍵。
(二)、邊數的另一算法:
每一個碳原子僅與相鄰的三個碳原子鍵結,二處C-C單鍵,一處C=C雙鍵,因單鍵、雙鍵為兩碳原子間共用,因此每一個碳原子平均擁有0.5×2個單鍵,0.5個雙鍵,C60的分子中共有60個碳原子,應擁有60個(0.5×2×60)單鍵及30個(0.5×60)雙鍵,即90個(60+30)邊。
圖五:每1個六角環與3個六角環、 圖六:每1個五角環與5個
3個五角環交互相接。 六角環相接。
(三)、六角環的數目:
每1個六角環與3個六角環、3個五角環交互相接,接合處的鍵分別為雙鍵、單鍵(如圖五),因與鄰環共用,因此1個六角環實際僅有1.5個(0.5×3)雙鍵、1.5個單鍵。C60的分子中有30個雙鍵,故有20個(30/1.5)六角環;又單鍵共有60個,20個六角環共用去30個(1.5×20)單鍵,剩下30個(60-30)單鍵供五角環用。
(四)、五角環的數目:
每1個五角環與5個六角環相接(如圖六),接合處的鍵均為單鍵,因與六角環共用,因此1個五角環平均擁有2.5個(0.5×5)單鍵,故有12個(30/2.5)五角環。
(五)、僅由邊數無法推出五角環、六角環的數目:
五角環雖有5個邊,因與鄰環共用,因此1個五角環實際僅擁有2.5個邊。六角環雖有6個邊,因與鄰環共用,因此1個六角環實際僅擁有3個邊。
設五角環有x個、六角環有y個(x 、y均為正整數)
2.5 × x+3 × y = 90
3 × y= 90-2.5 × x
y = 30 -(5/6)× x
x必為6的倍數
解之 x=6 y=25;x=12 y=20;x=18 y=15或x=24 y=10
六、截角正二十面體(truncated icosahedron)的製作方法
將(實心)正二十面體的每個凸角切掉適當大小,即形成一個截角正二十面體。它具有六十個頂點、九十條稜線,以及三十二個面(其中二十個為正六邊形,十二個為正五邊形)。由於它由兩種正多邊形拼成,因此並不算是「正多面體」,足球便是截角正二十面體(如圖四)。
七、連續兩年的大學聯考考題
【1993日大】
碳六十,是最近新發現的碳的同素異形體。它的分子C60是由60個碳原子所組成,它的分子形狀像足球,如圖三。試問其碳上的混成軌域與下列何者最接近?(A)鑽石中的碳(B)石墨中的碳 (C)二氧化碳中的碳 (D)聚乙烯中的碳
解析:C60為sp2混成軌域,而鑽石、聚乙烯為sp3混成軌域,二氧化碳為sp混成軌域,只有石墨中的碳和C60一樣為sp2混成軌域。
【1994日大】
C60的分子如圖三,它有幾個π鍵?(A)60 (B)30 (C)20 (D)0
解析:每一個C以sp2混成軌域彼此鍵結形成單鍵,且均剩下一個pz電子,而每一個π鍵需2個pz電子,60個C有60個pz電子,故可形成30個π鍵。
八、結語
C60由20個六角環和12個五角環所組成,這是課本上的詞句,常出現在考題中,讀完本文後,您還要再死記20、12這種數字嗎?C60的發現及得獎,可以說是兩件天文物理研究上的意外斬獲,雖然是二十世紀的化學成果,但對於二十一世紀的科技發展必有深遠的影響,我們且拭目以待吧!
九、參考資料
1.李虎雄等(民90年):高級中學幾何學(下),p66。台中市:大同資訊。
2.黃長司等(民89年):高級中學物質科學化學篇(下)教師手冊,p116。台中市:大同資訊。
3.施政雄等(民88年):高級中學基礎化學教師手冊,p59-61。台北縣:建宏出版社。
4.楊永華等(民90年):高級中學物質科學化學篇(下)教師手冊,p129。台北市:三民書局。
5.夏鑄九(1999年):建築,p113。台北市:貓頭鷹出版社。
6.李錫隆,一九九六年諾貝爾化學獎的故事。
參考資料
http://www.cysh.cy.edu.tw/subject/chem/C60%AA%BA%B5o%B2{%BBP%A8%E4%C3%E4%A1B%AD%B1%BC%C6%A5%D8%A4%A7%ADp%BA%E2.htm
2010年5月11日 星期二
2010年5月10日 星期一
立體圖片製作 (Anaglyph Image)
我所使用的軟體
http://www.stereoeye.jp/software/index_e.html
這一套軟體非常容易使用,只要選擇左眼所見的照片,及右眼所見的照片
另一套軟體是用php寫的class
http://www.phpclasses.org/package/3325-PHP-Generate-a-stereo-image-from-two-source-images.html
我使用的左眼照片
立體電影
http://www.stereoeye.jp/software/index_e.html
這一套軟體非常容易使用,只要選擇左眼所見的照片,及右眼所見的照片
另一套軟體是用php寫的class
http://www.phpclasses.org/package/3325-PHP-Generate-a-stereo-image-from-two-source-images.html
我使用的左眼照片
右眼照片
最後成果!
網路上的另一篇教學文件
立體電影
2010年5月5日 星期三
江蕙-落雨聲
江蕙-落雨聲
作詞:方文山 作曲:周杰倫 編曲:陳飛午
落雨聲 哪親像一條歌
誰知影 阮越頭嘸敢聽
異鄉的我 一個人起畏寒 寂寞的雨聲 捶阮心肝
人孤單 像斷翅的鳥隻
飛袂行 咁講是阮的命
故鄉的山 永遠攏站置遐 阮的心晟只有講乎山來聽
來到故鄉的海岸 景色猶原攏總無變化
當初離開是為啥 你若問阮阮心肝就疼
你若欲友孝世大嘸免等好額 世間有阿母惜的囝仔尚好命
嘸通等成功欲來接阿母住 阿母啊 已經無置遐
你若欲友孝世大嘸免等好額 世間有阿母惜的囝仔尚好命
出社會走闖塊甲人拼輸贏 為著啥 家己嘸知影
你若欲友孝世大嘸免等好額 世間有阿母惜的囝仔尚好命
嘸通等成功欲來接阿母住 阿母啊 已經無置遐 哭出聲 無人惜命命
===========================================================
母親節到了,僅以這歌來紀念自已的母親。
真的是「你若欲友孝世大嘸免等好額 世間有阿母惜的囝仔尚好命」
訂閱:
文章 (Atom)